force applied to a spring
work done
weight

resultant force
acceleration
distance travelled

gravitational potential energy
kinetic energy
momentum

Don't forget the SI units!
potential difference = current

efficiency = weight = mass

W = N

Don’t forget!

charge flow

wave speed

efficiency

power = (current)

Don’t forget!

power = work done = force × distance

acinet

force applied to a spring = spring constant

resultant force = mass × acceleration

POTENTIAL!DIFFERENCE

ENERGY!TRANSFER

Knowledge!!

gravitational field strength = N/kg

Don’t forget!

kinetic energy = 0.5 × mass × velocity²

total power input × time = power

power = current × potential difference

power = energy transfer / time

energy transfer = work done = force × extension

energy transfer = work done = force × distance

power = W / t

potential difference

Don’t forget!

Don’t forget!

Don’t forget!

Don’t forget!
Energy Transferred

Energy transferred = **Power** × **Time**

\[E = P \times t \]

- **Units:** J (Joules), W (Watts), s (Seconds)

Don’t forget the SI units

Work Done

Work done = **Force** × **Distance**

\[W = F \times s \]

- **Units:** J (Joules), N (Newtons), m (Meters)

Don’t forget the SI units

Force Applied to a Spring

Force applied to a spring = **Spring constant** × **Extension**

\[F = k \times e \]

- **Units:** N (Newtons), N/m (Newton per meter), m (Meters)

Don’t forget the SI units

Density

Density = **Mass** / **Volume**

\[\rho = \frac{m}{v} \]

- **Units:** kg/m³ (Kilograms per cubic meter), kg/l (Kilograms per liter), g/cm³ (Grams per cubic centimeter)

Don’t forget the SI units
density

energy transferred

energy transferred