

New Documen	nent 1	Name:	
		Class:	
		Date:	
Time:	26 minutes		
Marks:	26 marks		
Comments:			

Q1.

In 1869, Dmitri Mendeleev produced his periodic table of the elements.

Mendeleev placed the alkali metals in the same group.

Dos	scribe how the elements in the modern periodic table are arranged:
(i)	in terms of protons
(ii)	in terms of electrons.
Stat	to two proportion of transition alaments that make them more useful than alkal
	te two properties of transition elements that make them more useful than alkal als for making water pipes.
meta	
meta	als for making water pipes.

res	scientists, Miller and Urey, investigated how simple gases that may have been ent in the Earth's early atmosphere led to the formation of chemicals such as glycine ine is found in living organisms.
	$\begin{array}{c c} H & H & O \\ N-C-C & O \end{array}$
he	displayed (structural) formula of glycine is:
a)	Name three simple gases that could have been present in the Earth's early atmosphere that might combine to form glycine.
	1
	2
	3
))	Describe the main differences between the Earth's early atmosphere and the atmosphere today.
)	Air is a source of some gases used in industrial processes.

	(Total 9
eca	re is molten rock below the Earth's solid outer crust. The rock remains molten ause the radioactive decay of isotopes such as uranium, thorium and potassium ases heat energy.
i)	Explain how this released heat energy is thought to cause the recycling of rocks.
i)	Two isotopes of potassium are shown.
	³⁹ ₁₉ K ⁴⁹ ₁₉ K
	Explain what is meant by <i>isotopes</i> . You must include numbers of electrons, neutrons and protons in your explanation.

(4) (Total 8 marks)

Mark schemes

Q1.				
(a)	simil	ar properties		
		allow same properties		
		allow correct example of property		
		ignore answers in terms of atomic structure	1	
			1	
(b)	(i)	in order of atomic / proton number		
		allow increasing number (of protons)	1	
			•	
	(ii)	elements in same group have same number (of electrons) in outer shell or highest energy level		
		allow number (of electrons) increases across a period		
		anon name (er ereen ene) mereades de les de persed	1	
(c)	anv t	ewo from:		
(-)		statements must be comparative		
	•	stronger / harder		
	_	ignore higher densities less reactive		
	•	higher melting points		
		ignore boiling point		
			2	
(d)	reac	tivity increases down group		
		allow converse throughout		
		for next three marks, outer electron needs to be mentioned		
		once otherwise max = 2	1	
	outo.	r alastran is further from nucleus		
	outer	r electron is furth <u>er</u> from nucleus allow <u>more</u> energy levels / shells		
		allow larg <u>er</u> atoms		
		anon larg <u>or</u> atomo	1	
	less a	attraction between outer electron and nucleus		
	<u></u>	allow <u>more</u> shielding		
			1	
	there	fore outer electron lost <u>more</u> easily		
			1	
				[9
00				
Q2.		if and a format the private it mount has a comment		
(a)		if <u>only</u> formula given it must be correct		
	any t	hree from:		
	•	ammonia		
		accept NH ₃		

methane accept CH₄ allow ethane / butane / propane hydrogen accept H₂ water vapour accept H₂O <u>vapour</u> / steam carbon dioxide accept CO₂ carbon monoxide accept CO allow oxygen / O₂ allow nitrogen / N₂ ignore nitrogen oxide ignore carbon 3 (b) (in atmosphere today) ignore references to water vapour allow converse (much) less carbon dioxide / CO₂ allow carbon dioxide was the main gas (in Earth's early atmosphere) 1 more nitrogen / N₂ allow nitrogen is now the <u>main</u> gas (in the atmosphere today) nitrogen is now 78 x 80% 1 more oxygen / O₂ 1 no ammonia / NH₃ or less methane / CH₄ or more argon / Ar or more noble gases allow less ammonia / NH₃ 1 (c) (fractional) distillation 1 gases have different boiling points allow gases condense at different temperatures ignore condensing points / levels ignore evaporating points / levels 1

[9]

Q3.

(i) convection currents

	accept a suitable description of convection currents	1
	move the Earth's plates accept a suitable description of 'movement' of Earth's plates	1
	at plate boundary one plate or a slab of rock can be pushed down forming magma/molten rock	
	accept at subduction zones magma/molten rock is formed – deconstructive boundary	1
	magma/molten rock rising and cooling at the Earth's surface reforms as part of the plate	
	accept magma/molten rock rising and cooling at the Earth's surface forms igneous rock – constructive boundary accept Earth's crust or lithosphere for Earth's surface	
/:: \		1
(ii)	isotopes are atoms of the same element do not accept that isotopes have the same atomic number but a different atomic mass	
		1
	19/the same number of protons	1
	19/the same number of electrons do not penalise for incorrect	
		1
	20 and 21 neutrons/different numbers of neutrons arithmetic if concept is correct	1
		1